IBA in SIAM

NFFA And Nanosafety Workshop

Jorge Mejia & Julien Colaux January the 9th, 2020

Synthesis Irradiation & Analysis of Materials

SIAM Platform - unique facilities

What is Ion Beam Analysis?

Ion Beam Analysis - Particle-Induced X-Ray Emission (PIXE)

Auger_Process.svg from Wikipedia Commons.

Application fields for PIXE

Quantitation of CNTs catalysts Photovoltaics Airborne particulate matter (APM)

Bio-distribution and bio-persistence of ENMs Protein structure

Authentification de bouteilles de vin anciennes par faisceaux

X-RAY SPECTROMETRY

Research Article

Trace element profiling of gunshot residues by PIXE and SEM-EDS: a feasibility study

M. J. Bailey ⊠, K. J. Kirkby, C. Jeynes First published: 20 February 2009 Full publication history DOI: 10.1002/xrs.1142 View/save citation Cited by (CrossRef): 15 articles ← Check for updates Citation tools ▼

Abstract

A feasibility study was carried out into the use of particle-induced x-ray emission (PIXE) on the ion microprobe for the characterisation of gunshot residues (GSR). We compare these results with the conventional technique, scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Samples of gunshot residue from four different sources were collected. Individual particles of GSR were analysed by SEM-EDS using a 30-keV electron beam focussed to ~10 nm, and PIXE using a 2.5-MeV proton beam focussed to ~4 μ m. PIXE revealed trace or minor elements undetectable by SEM-EDS, thereby strengthening the discrimination between different types of GSR. Copyright © 2009 John Wiley & Sons, Ltd.

Assessing the possible hazard associated to NPs

Nanosafety related characterization

Quantitative analysis of NPs in complex systems

NPs fate in paints

Inhalation model designed for in-vivo experiments on mice. The system is composed of a mixing chamber, an animal cage and ELPI instrument.

Overlay of SEM images and Ti mapping (recorded with 100 scans) at 3 different locations in the paint overspray sample. Sample was analyzed with a JEOL 7500 F operating at 50 keV, 20 μ A and with LABE detector (backscattered electrons are detected)

Fichera, O. et al, Applied Nanoscience. 9, 515-528 (2019).

Focused incident beam (µ-PIXE)

Micrometeoroid impacts on the HUBBLE space telescope Wide Field and Planetary Camera

2 mm

2 (WFPC2)

Fig. 2. WFPC2-462: BEI and PIXE maps across centre of feature.

WFPC2-462: a) and b) SEM-EDX of metal in pit (red) and surrounding metal (grey), normalized to background between Cr K α and Cr K β ; c) and d) PIXE of metal area inside pit (red) and surrounding metal (blue), normalized to Cr K α peak area.

μ-Probe now available @ UNamur

2 mm

Focused incident beam (µ-PIXE)

Analysis of rat lungs

O. Lozano, J.L. Colaux et al.,

"Fast, asymmetric and non-homogeneous clearance of SiC nano-aerosol after 5 day exposure using ion beam analysis" accepted in Nanomedicine (2017)

Know how

- Nanomaterials (NMs) and nanoparticles (NPs) physicochemical characterisation (pristine forms, dispersions, complex matrices, environmental compartments, ...)
- Fate and biodistribution studies at cellular and/or organ levels.
- Multielemental determination in complex matrices
- FATE OF NMs: Evolution of NMs (surface) in specific compartments. Released (nano)materials (intentional or unintentional, during manufacturing, after erosion or aging).
- Detection and evaluation of released (nano)materials
- IN SILICO MODELLING (sedimentation of NMs in aqueous media, environmental compartments).

Liquid sample analysis Zebrafish eggs samples (LU)

С N 0

573,694 128,076 211,847

Exposure to TiO2 NPs (NM-105) in ecotox media (M7, egg water)

Translocation experiments (apical, basal, membrane, cells).

Liquid sample and configuration settings

Liquid sample results (AMI)

		[Ba]	Unc.	LOD	
	sample	wt.ppm	Wt.ppm	wt.ppm	
UNamur	2mg_BaSO4	612,219	39,251	1,227	
UNamur	0.1mg_BaSO4	11,301	1,639	2,861	
UNamur	0.01mg_BaSO4	296,200	94,441	2,659	
UNamur	0.001mg_BaSO4			1,664	
PATROLS	2mg_BaSO4	561,051	36,446	2,042	
PATROLS	0.1mg_BaSO4	29,721	3,118	2,541	
PATROLS	0.01mg_BaSO4	4,672	2,317	2,733	
PATROLS	0.001mg_BaSO4			2,691	

		[BaSO4]	Unc.		LOD
	sample	mg/ml	mg/ml		mg/ml
UNamur	2mg	1.708		0.1095	0.003
UNamur	0.1mg	0.031		0.0045	0.004
UNamur	0.01mg	0.277		0.0882	0.001
UNamur	0.001mg				0.002
PATROLS	2mg	1.266		0.0822	0.005
PATROLS	0.1mg	0.169		0.0178	0.014
PATROLS	0.01mg	0.021		0.0102	0.012
PATROLS	0.001mg				0.012

Uncertainty values are established from a bottom-up approach (uncertainty budget).

horeover, LOD still too high

Measurement of liquid sample by IBA

Measurement of liquid sample by IBA

Top view

Some last results

NM-105 (TiO₂)

Values given are indicative or typical "best" values.

Different applications may have widely differing performances.

Possible primary beam energies and types are indicated. A wide variety may be used.

	SIMS	XTEM	SAM	GD-OES	XPS	la - Icp-Ms	IBA	
Primary beam	keV ions	~100 keV electrons	~100 keV electrons	plasma	X-rays	Pulsed laser	~3 MeV light ions ~30 MeV heavy ions	
Detected signal	Sputtered ions	Primary electrons in phase contrast	Auger electrons	visible photons	Photo- electrons	Evapor- ated ions	X-rays; Nuclear reaction products: scattered primaries, target recoils and γ-rays	
Destructive	Yes	Yes	Yes	Yes	Yes	Yes	No	
Depth resolution	2 nm	0.1 nm	2 nm	20 nm	2 nm	10 nm	2 nm	
Information depth	500 nm	100 nm	500 nm	50 µm	500 nm		15 µm	
Lateral resolution	50 nm	0.1 nm	2 nm	1 mm	3 µm	10 mm	500 nm	
Elemental Imaging	Yes	EELS, EDX	Yes	No	Yes	No	Yes	
Ambient analysis	No	No	No	No	No	Yes	Yes	
Sample preparation	No	Yes	UHV	No	UHV	No	No	
Quantitative	?	No	Yes	Yes	Yes	Yes	Yes	
Standards needed	Yes		Yes	Yes	Yes	Yes	No	
Elemental sensitivity	10 ⁻⁸	10-1	10-3	10-6	10-3	10 ⁻⁹	10 ⁻⁶	
Accuracy			10%	10%	5%	5%	1%	
Traceability					Yes	Yes	primary	

C. Jeynes & J.L. Colaux, "Thin film depth profiling by ion beam analysis", Analyst 141 (2016), 5944-5985.

Progress so far

- Liquid samples measurements: minimal manipulation and small volumes (~50 µL).
- Geometry OK (improvements are still possible, LOD still to be reduced?)
- Actual LOD is about 0,05 mg/mL, "sample concentration" is required for lower concentrations.
- Sets of data produced per sample (NMs and matrix information in the same run).
- Cross check/validation on the NMs dispersion protocol (exposure concentrations).
- Low uncertainty values and valuable data for simulation purposes.
- High potentiality for analyses of complex samples (in vitro/in vivo/ecotox, ...)

On going

- Sample stability study programmed.
- Improving sample preparation for solid samples.

Technological Platform

Synthesis Irradiation & Analysis of Materials

Expert Ion Beam Analysis Dr. Julien Colaux Email: julien.colaux@unamur.be Phone: +3281725470

Expert Surface Analysis Dr. Alex Felten Email: alex.felten@unamur.be Phone: +3281725236

Business Developer (expert nanomaterials) Dr. Jorge Mejia Email: jorge.mejiamendoza@unamur.be Phone: +3281725468

"Your potential partner for surface, materials and nanomaterials characterization"

web: siam.unamur.be

Thank you for your attention